
The State of Open Source GIS

 Prepared By: Paul Ramsey, Director
 Refractions Research Inc.
 209 – 560 Johnson Street
 Victoria, BC, V8W-3C6
 pramsey@refractions.net
 Phone: (250) 885-0632
 Fax: (250) 383-2140

Last Revised: May 30, 2004

TABLE OF CONTENTS

1 SUMMARY...3
1.1 OPEN SOURCE ...3
1.2 OPEN SOURCE GIS..5

2 IMPLEMENTATION LANGUAGES..6
2.1 SURVEY OF ‘C’ PROJECTS...6

2.1.1 Shared Libraries ...7
2.1.1.1 GDAL/OGR..7
2.1.1.2 Proj4..9
2.1.1.3 GEOS..10

2.1.2 Applications ..11
2.1.2.1 OpenEV ..12
2.1.2.2 UMN Mapserver ...13
2.1.2.3 GRASS ...14
2.1.2.4 OSSIM ..15
2.1.2.5 QGIS ...16
2.1.2.6 Thuban ..17
2.1.2.7 GMT ...18
2.1.2.8 PostGIS ...20

2.2 SURVEY OF ‘JAVA’ PROJECTS...21
2.2.1 Shared Libraries ...22

2.2.1.1 GML4J..22
2.2.1.2 WKB4J ...22
2.2.1.3 JTS Topology Suite ..23
2.2.1.4 GeoTools...24

2.2.2 Applications ..25
2.2.2.1 GeoServer ...25
2.2.2.2 DeeGree ..26
2.2.2.3 JUMP / JCS...27
2.2.2.4 OpenMap ..28
2.2.2.5 uDig / JUMP2 ...29

 - 2 -

1 SUMMARY

1.1 Open Source
“Open source” software is technically defined as software in which the source
code is available for modification and redistribution by the general public. There
are a myriad of different open source software licenses, and the “Open Source
Initiative” (http://www.opensource.org) has taken on the role of general arbiter of
license correctness.

However, it is easy to become overly distracted by licenses and source code when
evaluating open source software (OSS), or considering OSS as a corporate or
project strategy. Fundamentally, successful OSS projects are not created by
releasing free source code – they are created through the growth of communities
of shared interest.

For example, Apache is not a successful open source project because the code is
freely available. There are numerous web server projects that have freely
available and open source code. Apache is the preeminent open source web
server because it commands a powerful community that shares an interest in
maintaining Apache as a top-drawer web server. The Apache community
includes corporate giants like IBM and HP, government agencies, and academic
contributors. It also has a role for individual contributors. These diverse actors
can work together collaboratively because the Apache software and the Apache
organization have been engineered together to maximize transparency and
openness:

• The software itself is designed in a modular manner. At a basic level,
contributors can aid the project by writing special purpose modules which
add otherwise obscure functionality. For example, mod_auth_pgsql allows
Apache to do basic HTTP authentication by reading user names and
passwords from a PostgreSQL database. This is obscure functionality, usable
by maybe a few thousand users, but it adds an incremental value to the
product, and the modularity of the software makes it easy to add.

• The software is extremely well documented. A successful project must
reduce the amount of friction experienced by new contributors to a minimum,
to maximize the amount of useful effort directed at the project. Time spent
figuring out undocumented software internals is time not spent productively
working on the code.

• The software core design and development process is transparent. All
the mailing lists used by the core team for discussions of design ideas and
future directions are public. Anyone can contribute to the discussion,
although the core team will make the design decisions in the end. The source
code is available throughout the development process, via a CVS (concurrent
versioning system) archive, not just at release time.

 - 3 -

http://www.opensource.org/

• The core team itself is modular and transparent. The core development
team is made up of programmers who self-select. New members are added
based on their contributions to the source code. When a core member ceases
contributing to the project, they are removed after a set time period. There is
a governance structure that openly allows access to the core team based on
programming merit, not corporate or government affiliation.

The strength of open source projects therefore should be evaluated not simply on
technical merit or on legal licensing wording. OSS products should be evaluated
like COTS (“commercial off-the-shelf”) products, comparing both the technical
features and the vitality of the community that maintains and improves the
project.

Evaluations of OSS projects should ask:

• Is the project well documented? Does the web presence provide direct
access to both the source code and documentation about the internals of the
code? Is there tutorial level documentation for all three user categories (user,
administrator, programmer) to get people up and working with the software
quickly?

• Is the development team transparent? Is it clear who the core
development team is? Is the development team mailing list public? Is the
current development version of the code available online? Is membership in
the team attainable via a merit-based process?

• Is the software modular? (This criterion is more applicable to some projects
than others, depending on design constraints.) Is there a clear method to add
functionality to the project that does not involve re-working the internals? Is
this method documented clearly with examples? Is there a library of already-
contributed enhancements maintained by the wider user / developer
community?

• How wide is the development community? Are multiple organizations
represented in the core development team? Are core team members
financially supported in their work by sponsoring organizations? Is the
development community national or international? How large is the user
mailing list? How large is the developer mailing list?

• How wide is the user community? (This criterion is basically a standard
COTS criterion – more installations imply wider acceptance and testing.)
What organizations have deployed the software? What experiences have they
had?

The more of these questions which are answered in the positive, the healthier the
OSS project under examination is.

 - 4 -

1.2 Open Source GIS
The Open Source GIS space includes products to fill every level of the OpenGIS
spatial data infrastructure stack. Existing products are now entering a phase of
rapid refinement and enhancement, using the core software structures that are
already in place. Open Source software can provide a feature-complete
alternative to proprietary software in most system designs.

Rasters and Images:
TIFF, ERDAS, JPG,

GIF, PNG

GIS Vector Files:
ESRI Shape, MapInfo,

SDTS, IGDS, GML

PostGIS / PostgreSQL
Spatial Database

OGR Vector Library GDAL Raster Library

University of Minnesota Mapserver

OpenGIS Web Map Server (WMS)

OpenGIS Web
Feature Server (WFS)

The
Internet

Web
Browser

JUMP

Local Area
Network

Thuban

OpenGIS SQL Database

H
T
T

P
/
C

G
I

H
T
T

P
 /

 X
M

L

P
g
N

e
t /

 S
Q

L

JD
B

C
 /

 S
Q

L

H
T
T

P
 /

 X
M

L

Cascading
WMS

Server

JUMP
H

T
T

P
 /

 X
M

L

GeoServer

OpenEV

GeoTools

GRASS

 - 5 -

2 IMPLEMENTATION LANGUAGES

Open Source GIS software can be categorized into two largely independent
development tribes. Within each tribe, developers cross-pollinate very heavily,
contribute to multiple projects, and have high awareness of ongoing
developments. The two tribes can be loosely described as:

• The ‘C’ tribe, consisting of developers working on UMN Mapserver, GRASS,
GDAL/OGR, OSSIM, Proj4, GEOS, PostGIS and OpenEV.

• The ‘Java’ tribe, consisting of developers working on GeoServer, GeoTools,
JTS, JUMP/JCS, and DeeGree.

The PostGIS/PostgreSQL project – by virtue of standard database interfaces like
libpq (C/C++), ODBC and JDBC (Java) – is used by both tribes more or less
equally. However, because it is written in C, PostGIS is a natural member of the
C tribe and uses many of the C-based GIS support libraries. Mapserver is used
by some Java developments via JNI (Java Native Interface) bindings, or via the
OpenGIS WMS protocol.

Both the C and Java development areas have a high degree of internal project
linkage, with a great deal of leverage being applied through code reuse and
linking libraries.

2.1 Survey of ‘C’ Projects
The ‘C’ projects are, in general, more mature than the Java projects, having been
in development for a longer period of time, and having had more time to attract
active development communities. The core of the ‘C’ projects are the shared
libraries (shown in grey below), which are re-used across the application space
and form the base infrastructure for common capabilities, such as format
support and coordinate re-projection.

OGR/GDAL

Mapserver

GRASS

PostGIS

OpenEV

OSSIM

Proj4

GEOS

QGIS

Thuban
GMT

 - 6 -

2.1.1 Shared Libraries
The shared libraries provide common capabilities across the various C-based
applications, allowing applications to easily add features which would ordinarily
involve a great deal of implementation.

2.1.1.1 GDAL/OGR
The GDAL/OGR libraries are really two logically separate pieces of code: GDAL
provides an abstraction library for raster data and modules for reading and
writing various raster formats; OGR provides an abstraction library for vector
data and modules for reading and writing vector formats. However, the two
libraries are maintained within the same build system for historical reasons and
because both libraries are maintained by the same person.

Maintainer: Frank Warmerdam (warmerdam@pobox.com)

Web Site: http://remotesensing.org/gdal/

Implementation Language: C++

Source License: MIT

Because the source license for GDAL/ORG is BSD, the library is also used in
several proprietary GIS packages, and the maintainer derives some income
through maintaining the capabilities of the package for these proprietary users.

GDAL supports the following raster formats:

Long Format Name Code Creation Georeferencing Maximum
File Size

Arc/Info ASCII Grid AAIGrid Yes Yes No limits
Arc/Info Binary Grid (.adf) AIG No Yes --
Microsoft Windows Device
Independent Bitmap (.bmp)

BMP Yes Yes 4GiB

BSB Nautical Chart Format
(.kap)

BSB No Yes --

CEOS (Spot for instance) CEOS No No --
First Generation USGS DOQ
(.doq)

DOQ1 No Yes --

New Labelled USGS DOQ
(.doq)

DOQ2 No Yes --

Military Elevation Data (.dt0,
.dt1)

DTED No Yes --

ERMapper Compressed
Wavelets (.ecw)

ECW Yes Yes

ESRI .hdr Labelled EHdr No Yes --
ENVI .hdr Labelled Raster ENVI Yes Yes No limits
Envisat Image Product (.n1) Envisat No No --
EOSAT FAST Format FAST No Yes --
FITS (.fits) FITS Yes No
Graphics Interchange Format
(.gif)

GIF Yes No

 - 7 -

mailto:warmerdam@pobox.com
http://remotesensing.org/gdal/
http://remotesensing.org/gdal/frmt_bmp.html
http://remotesensing.org/gdal/frmt_bmp.html
http://remotesensing.org/gdal/frmt_ecw.html
http://remotesensing.org/gdal/frmt_ecw.html
http://remotesensing.org/gdal/frmt_fast.html
http://remotesensing.org/gdal/frmt_gif.html
http://remotesensing.org/gdal/frmt_gif.html

Long Format Name Code Creation Georeferencing Maximum
File Size

Arc/Info Binary Grid (.adf) GIO Yes Yes
GRASS Rasters GRASS No Yes --
TIFF / GeoTIFF (.tif) GTiff Yes Yes 4GiB
Hierarchical Data Format
Release 4 (HDF4)

HDF4 Yes Yes 2GiB

Erdas Imagine (.img) HFA Yes Yes No limits
Atlantis MFF2e HKV Yes Yes No limits
Japanese DEM (.mem) JDEM No Yes --
JPEG JFIF (.jpg) JPEG Yes Yes 4GiB (max

dimentions
65500x65500

)
JPEG2000 (.jp2, .j2k) JPEG2000 Yes Yes
JPEG2000 (.jp2, .j2k) JP2KAK Yes Yes
NOAA Polar Orbiter Level 1b
Data Set (AVHRR)

L1B No Yes --

Erdas 7.x .LAN and .GIS LAN No Yes 2GB
Atlantis MFF MFF Yes Yes No limits
Multi-resolution Seamless
Image Database

MrSID No Yes --

NITF NITF Yes Yes
OGDI Bridge OGDI No Yes --
PCI .aux Labelled PAux Yes No No limits
Portable Network Graphics
(.png)

PNG Yes No

Netpbm (.ppm,.pgm) PNM Yes No No limits
USGS SDTS DEM
(*CATD.DDF)

SDTS No Yes --

SAR CEOS SAR_CEOS No Yes --
USGS ASCII DEM (.dem) USGSDEM No Yes --
X11 Pixmap (.xpm) XPM Yes No

OGR supports the following vector formats:

Format Name Creation Georeferencing
Arc/Info Binary Coverage No Yes
ESRI Shapefile Yes Yes
GML Yes No
IHO S-57 (ENC) No Yes
Mapinfo File Yes Yes
Microstation DGN No No
OGDI Vectors No Yes
Oracle Spatial Yes Yes
PostgreSQL Yes Yes
SDTS No Yes
UK .NTF No Yes
U.S. Census TIGER/Line No Yes

 - 8 -

http://remotesensing.org/gdal/frmt_grass.html
http://remotesensing.org/gdal/frmt_gtiff.html
http://remotesensing.org/gdal/frmt_hdf4.html
http://remotesensing.org/gdal/frmt_hdf4.html
http://remotesensing.org/gdal/frmt_hfa.html
http://remotesensing.org/gdal/frmt_jpeg.html
http://remotesensing.org/gdal/frmt_jpeg2000.html
http://remotesensing.org/gdal/frmt_jp2kak.html
http://remotesensing.org/gdal/frmt_l1b.html
http://remotesensing.org/gdal/frmt_l1b.html
http://remotesensing.org/gdal/frmt_mrsid.html
http://remotesensing.org/gdal/frmt_mrsid.html
http://remotesensing.org/gdal/frmt_nitf.html
http://remotesensing.org/gdal/frmt_ogdi.html
http://gdal.velocet.ca/projects/opengis/ogrhtml/drv_avc.html
http://gdal.velocet.ca/projects/opengis/ogrhtml/drv_shapefile.html
http://www.remotesensing.org/ogr/drv_gml.html
http://gdal.velocet.ca/projects/opengis/ogrhtml/drv_s57.html
http://gdal.velocet.ca/projects/opengis/ogrhtml/drv_mitab.html
http://gdal.velocet.ca/projects/opengis/ogrhtml/drv_dgn.html
http://gdal.velocet.ca/projects/opengis/ogrhtml/drv_ogdi.html
http://gdal.velocet.ca/projects/opengis/ogrhtml/drv_oci.html
http://gdal.velocet.ca/projects/opengis/ogrhtml/drv_pg.html
http://gdal.velocet.ca/projects/opengis/ogrhtml/drv_sdts.html
http://gdal.velocet.ca/projects/opengis/ogrhtml/drv_ntf.html
http://gdal.velocet.ca/projects/opengis/ogrhtml/drv_tiger.html

2.1.1.2 Proj4
Proj4 is a coordinate re-projection library, capable of executing transformations
between cartographic projection systems, and also between different spheroids
and datums (where datum grid shifts are available).

The Proj4 library was originally written by Gerald Evenden as an academic
project in geodesy. The current maintainer is Frank Warmerdam, who began
maintaining Proj4 after Evenden ceased actively working on the project. Evenden
remains active on the mailing list, and is currently providing new mathematical
projections, though not providing code maintenance.

Maintainer: Frank Warmerdam (warmerdam@pobox.com)

Web Site: http://remotesensing.org/proj/

Implementation Language: C

Source License: MIT-style

Projections supported by the Proj4 library (projection code and common name):
aea : Albers Equal Area
aeqd : Azimuthal Equidistant
airy : Airy
aitoff : Aitoff
alsk : Mod. Stererographics of Alaska
apian : Apian Globular I
august : August Epicycloidal
bacon : Bacon Globular
bipc : Bipolar conic of western hemisphere
boggs : Boggs Eumorphic
bonne : Bonne (Werner lat_1=90)
cass : Cassini
cc : Central Cylindrical
cea : Equal Area Cylindrical
chamb : Chamberlin Trimetric
collg : Collignon
crast : Craster Parabolic (Putnins P4)
denoy : Denoyer Semi-Elliptical
eck1 : Eckert I
eck2 : Eckert II
eck3 : Eckert III
eck4 : Eckert IV
eck5 : Eckert V
eck6 : Eckert VI
eqc : Equidistant Cylindrical (Plate Caree)
eqdc : Equidistant Conic
euler : Euler
fahey : Fahey
fouc : Foucaut
fouc_s : Foucaut Sinusoidal
gall : Gall (Gall Stereographic)
gins8 : Ginsburg VIII (TsNIIGAiK)
gn_sinu : General Sinusoidal Series
gnom : Gnomonic
goode : Goode Homolosine
gs48 : Mod. Stererographics of 48 U.S.
gs50 : Mod. Stererographics of 50 U.S.
hammer : Hammer & Eckert-Greifendorff
hatano : Hatano Asymmetrical Equal Area
imw_p : International Map of the World Polyconic
kav5 : Kavraisky V

mill : Miller Cylindrical
mpoly : Modified Polyconic
moll : Mollweide
murd1 : Murdoch I
murd2 : Murdoch II
murd3 : Murdoch III
nell : Nell
nell_h : Nell-Hammer
nicol : Nicolosi Globular
nsper : Near-sided perspective
nzmg : New Zealand Map Grid
ob_tran : General Oblique Transformation
ocea : Oblique Cylindrical Equal Area
oea : Oblated Equal Area
omerc : Oblique Mercator
ortel : Ortelius Oval
ortho : Orthographic
pconic : Perspective Conic
poly : Polyconic (American)
putp1 : Putnins P1
putp2 : Putnins P2
putp3 : Putnins P3
putp3p : Putnins P3'
putp4p : Putnins P4'
putp5 : Putnins P5
putp5p : Putnins P5'
putp6 : Putnins P6
putp6p : Putnins P6'
qua_aut : Quartic Authalic
robin : Robinson
rpoly : Rectangular Polyconic
sinu : Sinusoidal (Sanson-Flamsteed)
somerc : Swiss. Obl. Mercator
stere : Stereographic
tcc : Transverse Central Cylindrical
tcea : Transverse Cylindrical Equal Area
tissot : Tissot
tmerc : Transverse Mercator
tpeqd : Two Point Equidistant
tpers : Tilted perspective
ups : Universal Polar Stereographic

 - 9 -

mailto:warmerdam@pobox.com
http://remotesensing.org/gdal/

kav7 : Kavraisky VII
labrd : Laborde
laea : Lambert Azimuthal Equal Area
lagrng : Lagrange
larr : Larrivee
lask : Laskowski
latlong : Lat/long (Geodetic)
longlat : Lat/long (Geodetic)
lcc : Lambert Conformal Conic
leac : Lambert Equal Area Conic
lee_os : Lee Oblated Stereographic
loxim : Loximuthal
lsat : Space oblique for LANDSAT
mbt_s : McBryde-Thomas Flat-Polar Sine (No. 1)
mbtfpp : McBride-Thomas Flat-Polar Parabolic
mbtfpq : McBryde-Thomas Flat-Polar Quartic
mbtfps : McBryde-Thomas Flat-Polar Sinusoidal
merc : Mercator
mil_os : Miller Oblated Stereographic

urm5 : Urmaev V
urmfps : Urmaev Flat-Polar Sinusoidal
utm : Universal Transverse Mercator (UTM)
vandg : van der Grinten (I)
vandg2 : van der Grinten II
vandg3 : van der Grinten III
vandg4 : van der Grinten IV
vitk1 : Vitkovsky I
wag1 : Wagner I (Kavraisky VI)
wag2 : Wagner II
wag3 : Wagner III
wag4 : Wagner IV
wag5 : Wagner V
wag6 : Wagner VI
wag7 : Wagner VII
weren : Werenskiold I
wink1 : Winkel I
wink2 : Winkel II
wintri : Winkel Tripel

2.1.1.3 GEOS
GEOS is the “Geometry Engine, Open Source”, a C++ implementation of the JTS
topology library. GEOS provides C++ implementations of all the simple features
objects found in the OpenGIS “Simple Features for SQL” specification, and
implementations of all the methods defined for those objects.

Topological calculations are easy to visualize, but hard to implement in
generality. The GEOS/JTS algorithms are robust for all the spatial predicates
(geometric comparisons which return true/false values). The GEOS/JTS
algorithms have only a few known failure modes in the spatial operators
(geometric functions which produce geometric results).

Important GEOS Methods

Predicates Operators

Relate(Geom)
Touches(Geom)
Disjoint(Geom)
Intersects(Geom)
Contains(Geom)
Crosses(Geom)
Within(Geom)
Overlaps(Geom)
IsValid()

Intersection(Geom)
Union(Geom)
Difference(Geom)
Buffer()
Distance(Geom)
Length()
Area()

Maintainer: Refractions Research (info@refractions.net)

Web Site: http://geos.refractions.net/

Implementation Language: C++

Source License: GPL

 - 10 -

mailto:warmerdam@pobox.com
http://remotesensing.org/gdal/

2.1.2 Applications
The C family of applications is a mixture of server-side applications and client-
side applications, analytical tools and display tools. Most GIS workloads are
covered in the application family, with the notable exception of map-making, the
most common GIS workload.

Note: The saturated commercial market for cartography tools, the high level of effort to
achieve a usable tools, and the appeal of other cutting edge projects have combined to deter
any active development on user-friendly paper map production tools. As with the OpenOffice
experience in Linux, it would probably require a dedicated multi-year funded project to
produce a core product with sufficient technical mass that an open source community could
reasonably continue with enhancements and support.

 - 11 -

2.1.2.1 OpenEV
OpenEV is a GIS viewer application, originally designed for a Linux environment
but recently ported to work under Windows as well. OpenEV’s most interesting
design feature is a reliance on OpenGL as a screen rendering language. The
reliance on OpenGL means OpenEV can provide very good render performance,
but it also restricts the platforms on which OpenEV can be run. OpenEV can
quickly view very large image files, and create 3D views of the images in
combination with digital elevation files.

OpenEV screen shot:

Maintainer: Atlantis Scientific (http://www.atlantis-scientific.com)

Web Site: http://openev.sourceforge.net/

Implementation Language: C / Python

Source License: LGPL

 - 12 -

mailto:warmerdam@pobox.com
http://remotesensing.org/gdal/

2.1.2.2 UMN Mapserver
The University of Minnesota Mapserver (commonly called just “Mapserver”) is an
internet map server, a server-side piece of software which renders GIS data
sources into cartographic map products on-the-fly.

On OSS evaluation merits, Mapserver is easily the most successful open source
GIS project to date.

Mapserver has a multi-disciplinary community, has core team members with
100% of their time devoted to product maintenance and enhancement, has an
open core team, substantial documentation, and a transparent release process.
The modularity of the project has been improved with each release, and now
supports both multiple input format types and multiple output render types.

On technical merits, Mapserver is also extremely successful. It supports more
input data sources than most proprietary products, has higher performance, and
(in the precompiled versions) is simpler to install and set up.

Input Formats Output Formats API Access
Shape GIF Mapserver CGI
PostgreSQL JPEG MapScript Python
OracleSpatial PNG MapScript Perl
ArcSDE All GDAL Formats MapScript PHP
Remote WMS Layers MapScript Java
JPG/WRL C API
GIF/WRL OpenGIS WMS
PNG/WRL OpenGIS WFS
All GDAL Formats
All OGR Formats

Maintainer: Mapserver Core Team (mapserver-dev@lists.gis.umn.edu)

Web Site: http://mapserver.gis.umn.edu

Implementation Language: C

Source License: MIT-style

 - 13 -

mailto:warmerdam@pobox.com
http://remotesensing.org/gdal/

2.1.2.3 GRASS
GRASS is easily the oldest of the open source GIS software products. It was
originally a closed project of the US Army, started in 1982 to provide capabilities
that did not exist in the commercial GIS sector. The Army maintained GRASS
under active development until 1992, and continued with fixes and patches
through 1995. GRASS was picked up by the academic community in 1997,
when Baylor University began coordinating development, and was officially “open
sourced” in 1999 under the GPL.

Originally written as a raster analysis system, GRASS has had vector analysis
capabilities added to it as well. GRASS can import a wide range of formats,
using both the GDAL and OGR libraries for data import. GRASS also has the
ability to directly read attribute and spatial data from PostGIS/PostgreSQL.

GRASS has been most historically effective as a modeling tool, carrying out
complex data analysis tasks. The list of models at the GRASS home page
(http://grass.baylor.edu//modelintegration.html) gives a flavor of the kinds of
problems GRASS is being used to solve.

Maintainer: GRASS Core Team

Web Site: http://grass.baylor.edu//index.html

Implementation Language: C

Source License: GPL

 - 14 -

http://grass.baylor.edu//modelintegration.html
http://grass.baylor.edu//index.html

2.1.2.4 OSSIM
OSSIM (Open Source Software Image Map) is a raster manipulation tool chain.
OSSIM is primarily developed by ImageLinks (www.imagelinks.com) and is used
internally by that company for many image production tasks. ImageLinks also
uses OSSIM in their RasterWare product line of high end raster storage and
manipulation appliances.

OSSIM is a C++ library, with a number of applications built on top. The primary
technical benefit of OSSIM is that it is architected to cut image processing tasks
into independent and parallelizable components. As a result, OSSIM-based
processing tasks can be run on high performance computing arrays, such as
Beowulf clusters, for massive performance increases.

OSSIM processing streams are built up as “task chains”, tying together different
processing modules to turn raw imagery into completed product.

Maintainer: Imagelinks Inc

Web Site: http://www.ossim.org

Implementation Language: C++

Source License: GPL

 - 15 -

http://www.imagelinks.com/
http://grass.baylor.edu//index.html

2.1.2.5 QGIS
QGIS is an GIS viewing environment built primarily for the Linux desktop. QGIS
depends on the QT widget set, which is a same widget set used by the popular
KDE desktop environment. However, QT is available for other platforms (Win32,
OS/X, Solaris) so a QGIS desktop can be built for use in a multi-platform
environment.

QGIS supports PostGIS and Shapefiles as vector data sources. QGIS uses OGR
as a data import bridge, so support of all OGR formats is also available. QGIS
supports DEM, ArcGrid, ERDAS, SDTS, and GeoTIFF raster formats.

QGIS has increased in development tempo in 2004, completing several minor
releases and adding important new features with each release. The developer
community is increasing beyond the original founder.

Maintainer: Gary Sherman (gsherman@sourceforge.net)

Web Site: http://qgis.org/

Implementation Language: C++

Source License: GPL

 - 16 -

http://grass.baylor.edu//index.html

2.1.2.6 Thuban
Thuban is an implementation of a GIS viewer application in Python, using the
WxWindows cross platform interface toolkit for the UI. Thuban includes:

• Vector Data Support: Shapefile, PostGIS Layer
• Raster Data Support: GeoTIFF Layer
• Comfortable Map Navigation
• Object Identification and Annotation
• Legend Editor and Classification
• Table Queries and Joins
• Projection Support
• Printing and Vector Export
• API for Add-Ons (Extensions)

Maintainer: Intevation GmbH (info@intevation.net)

Web Site: http://thuban.intevation.org/

Implementation Language: Python

Source License: GPL

 - 17 -

mailto:info@intevation.net
http://thuban.intevation.org/

2.1.2.7 GMT
The “Generic Mapping Tools” (GMT) is a project with a very long history.
Developed in an academic environment in the University of Hawaii since 1988,
GMT is designed as a suite of small data manipulation and graphic generation
programs, that can be sequenced and scripted together to create complex data
processing chains. For example, GMT applications can take raw data in from
sensors, create an interpolated grid, contour the grid, and create plotter-ready
files for printing in automated batch streams.
FILTERING OF 1-D AND 2-D DATA:

blockmean L2 (x,y,z) data filter/decimator
blockmedian L1 (x,y,z) data filter/decimator
blockmode Mode-estimating (x,y,z) data filter/decimator
filter1d Filter 1-D data (time series)
grdfilter Filter 2-D data in space domain

PLOTTING OF 1-D and 2-D DATA:
grdcontour Contouring of 2-D gridded data
grdimage Produce images from 2-D gridded datar
grdvector Plot vector fields from 2-D gridded data
grdview 3-D perspective imaging of 2-D gridded data
psbasemap Create a basemap frame
psclip Use polygon files as clipping paths
pscoast Plot coastlines, filled continents, rivers, and political borders
pscontour Direct contouring or imaging of xyz-data by triangulation
pshistogram Plot a histogram
psimage Plot Sun rasterfiles on a map
psmask Create overlay to mask specified regions of a map
psrose Plot sector or rose diagrams
psscale Plot grayscale or colorscale
pstext Plot textstrings
pswiggle Draw anomalies along track
psxy Plot symbols, polygons, and lines in 2-D
psxyz Plot symbols, polygons, and lines in 3-D

GRIDDING OF (X,Y,Z) DATA:
nearneighbor Nearest-neighbor gridding scheme
surface Continuous curvature gridding algorithm
triangulate Perform optimal Delauney triangulation on xyz data

SAMPLING OF 1-D AND 2-D DATA:
grdsample Resample a 2-D gridded data onto new grid
grdtrack Sampling of 2-D data along 1-D track
sample1d Resampling of 1-D data

PROJECTION AND MAP-TRANSFORMATION:
grdproject Project gridded data onto new coordinate system
mapproject Transformation of coordinate systems
project Project data onto lines/great circles

INFORMATION:
gmtdefaults List the current default settings
gmtset Edit parameters in the .gmtdefaults file
grdinfo Get information about grd files
minmax Report extreme values in table datafiles

 - 18 -

http://gmt.soest.hawaii.edu/doc/html/blockmean.html
http://gmt.soest.hawaii.edu/doc/html/blockmedian.html
http://gmt.soest.hawaii.edu/doc/html/blockmode.html
http://gmt.soest.hawaii.edu/doc/html/filter1d.html
http://gmt.soest.hawaii.edu/doc/html/grdfilter.html
http://gmt.soest.hawaii.edu/doc/html/grdcontour.html
http://gmt.soest.hawaii.edu/doc/html/grdimage.html
http://gmt.soest.hawaii.edu/doc/html/grdvector.html
http://gmt.soest.hawaii.edu/doc/html/grdview.html
http://gmt.soest.hawaii.edu/doc/html/psbasemap.html
http://gmt.soest.hawaii.edu/doc/html/psclip.html
http://gmt.soest.hawaii.edu/doc/html/pscoast.html
http://gmt.soest.hawaii.edu/doc/html/pscontour.html
http://gmt.soest.hawaii.edu/doc/html/pshistogram.html
http://gmt.soest.hawaii.edu/doc/html/psimage.html
http://gmt.soest.hawaii.edu/doc/html/psmask.html
http://gmt.soest.hawaii.edu/doc/html/psrose.html
http://gmt.soest.hawaii.edu/doc/html/psscale.html
http://gmt.soest.hawaii.edu/doc/html/pstext.html
http://gmt.soest.hawaii.edu/doc/html/pswiggle.html
http://gmt.soest.hawaii.edu/doc/html/psxy.html
http://gmt.soest.hawaii.edu/doc/html/psxyz.html
http://gmt.soest.hawaii.edu/doc/html/nearneighbor.html
http://gmt.soest.hawaii.edu/doc/html/surface.html
http://gmt.soest.hawaii.edu/doc/html/triangulate.html
http://gmt.soest.hawaii.edu/doc/html/grdsample.html
http://gmt.soest.hawaii.edu/doc/html/grdtrack.html
http://gmt.soest.hawaii.edu/doc/html/sample1d.html
http://gmt.soest.hawaii.edu/doc/html/grdproject.html
http://gmt.soest.hawaii.edu/doc/html/mapproject.html
http://gmt.soest.hawaii.edu/doc/html/project.html
http://gmt.soest.hawaii.edu/doc/html/gmtdefaults.html
http://gmt.soest.hawaii.edu/doc/html/gmtset.html
http://gmt.soest.hawaii.edu/doc/html/grdinfo.html
http://gmt.soest.hawaii.edu/doc/html/minmax.html

CONVERT OR EXTRACT SUBSETS OF DATA:
gmtconvert Convert table data from one format to another
gmtmath Reverse Polish calculator for table data
gmtselect Select table subsets based on multiple spatial criteria
grd2xyz Convert 2-D gridded data to table
grdcut Cut a sub-region from a grd file
grdpaste Paste together grdfiles along common edge
grdreformat Convert from one grdformat to another
splitxyz Split xyz files into several segments
xyz2grd Convert table to 2-D grd file

MISCELLANEOUS:
makecpt Create GMT color palette tables
spectrum1d Compute spectral estimates from time-series
triangulate Perform optimal Delauney triangulation on xyz data

DETERMINE TRENDS IN 1-D AND 2-D DATA:
fitcircle Finds best-fitting great or small circles
grdtrend Fits polynomial trends to grdfiles (z = f(x,y))
trend1d Fits polynomial or Fourier trends to y = f(x) series
trend2d Fits polynomial trends to z = f(x,y) series

OTHER OPERATIONS ON 2-D GRIDS:
grd2cpt Make color palette table from grdfile
grdclip Limit the z-range in gridded data sets
grdedit Modify grd header information
grdfft Operate on grdfiles in frequency domain
grdgradient Compute directional gradient from grdfiles
grdhisteq Histogram equalization for grdfiles
grdlandmask Creates mask grdfile from coastline database
grdmask Set nodes outside a clip path to a constant
grdmath Reverse Polish calculator for grdfiles
grdvolume Calculating volume under a surface within a contour

Maintainer: Paul Wessel & Walter Smith

Web Site: http://gmt.soest.hawaii.edu/

Implementation Language: C

Source License: GPL

 - 19 -

http://gmt.soest.hawaii.edu/doc/html/gmtconvert.html
http://gmt.soest.hawaii.edu/doc/html/gmtmath.html
http://gmt.soest.hawaii.edu/doc/html/gmtselect.html
http://gmt.soest.hawaii.edu/doc/html/grd2xyz.html
http://gmt.soest.hawaii.edu/doc/html/grdcut.html
http://gmt.soest.hawaii.edu/doc/html/grdpaste.html
http://gmt.soest.hawaii.edu/doc/html/grdreformat.html
http://gmt.soest.hawaii.edu/doc/html/splitxyz.html
http://gmt.soest.hawaii.edu/doc/html/xyz2grd.html
http://gmt.soest.hawaii.edu/doc/html/makecpt.html
http://gmt.soest.hawaii.edu/doc/html/spectrum1d.html
http://gmt.soest.hawaii.edu/doc/html/triangulate.html
http://gmt.soest.hawaii.edu/doc/html/fitcircle.html
http://gmt.soest.hawaii.edu/doc/html/grdtrend.html
http://gmt.soest.hawaii.edu/doc/html/trend1d.html
http://gmt.soest.hawaii.edu/doc/html/trend2d.html
http://gmt.soest.hawaii.edu/doc/html/grd2cpt.html
http://gmt.soest.hawaii.edu/doc/html/grdclip.html
http://gmt.soest.hawaii.edu/doc/html/grdedit.html
http://gmt.soest.hawaii.edu/doc/html/grdfft.html
http://gmt.soest.hawaii.edu/doc/html/grdgradient.html
http://gmt.soest.hawaii.edu/doc/html/grdhisteq.html
http://gmt.soest.hawaii.edu/doc/html/grdlandmask.html
http://gmt.soest.hawaii.edu/doc/html/grdmask.html
http://gmt.soest.hawaii.edu/doc/html/grdmath.html
http://gmt.soest.hawaii.edu/doc/html/grdvolume.html
http://gmt.soest.hawaii.edu/

2.1.2.8 PostGIS
PostGIS adds spatial database capabilities to the PostgreSQL
(www.postgresql.org) object-relational database. The PostGIS extension adds:

• Proper spatial objects (point, line, polygon, multipoint, multiline,
multipolygon, geometrycollection)

• Spatial indexing (r-tree)

• Simple analytical functions (area, length, distance)

• Predicates (via GEOS)

• Operators (via GEOS)

• Coordinate system metadata

• Coordinate reprojection support (via Proj4)

• Data import and export tools

The strength of PostGIS is that it has become the standard spatial database
backend for all the other open source GIS tools. As a result, a layer in PostGIS
can be analyzed with GRASS, published over the web with Mapserver, visualized
on the desktop with OpenEV, exported to proprietary formats with OGR.

PostGIS
PostgreSQL

Spatial
Database

Mapserver

OGR

QGIS

GeoTools

JUMP

WKB4J

FME

FME

MS Access

Visual Basic

GRASS

JDBC

ODBC

LibPQ

PostGIS is also used heavily by applications and libraries in the Java
development language, via the standard JDBC (Java Database Connectivity)
libraries.

Maintainer: Refractions Research Inc

Web Site: http://postgis.refractions.net

Implementation Language: C

Source License: GPL

 - 20 -

http://www.postgresql.org/
http://grass.baylor.edu//index.html

2.2 Survey of ‘Java’ Projects
The “Java” world initially included several independent attempts at “complete
unified toolkits” – OpenMap, GeoTools, and deegree. OpenMap continues to be
independently developed, but the deegree and GeoTools projects have decided to
work together at project convergence. In addition, the new JUMP toolkit project
uses many of the same underlying libraries and resources the GeoTools/deegree
project does.

As a result, development in the Java world is currently concentrated around
projects which use the JTS Topology Suite as the basis for geometry
representation.

GeoTools

OpenMap
GeoServer

JTS
Topology

Suite

WKB4J

GML4J

JUMP
Unified
Mapping
Platform

JCS
Conflation

Suite
uDig / JUMP2

DeeGree

Side projects, such as GML4J (GML processing) and WKB4J (well-known binary
processing) are also used either directly by the projects or by applications which
use the toolkit chain.

 - 21 -

2.2.1 Shared Libraries
2.2.1.1 GML4J
GML4J is a GML processing library written by Galdos Systems as a test bed for
GML technology. It has been used by various of the Java applications for GML
processing, but has been largely replaced in favor of event-driven parsers for
performance reasons. GML4J uses a DOM (document object model) parsing
system, which requires that all the data be held in memory for access purposes.
This can result in very large memory footprints for large data sets.

However, GML4J remains the most complete GML processing engine.

Maintainer: Galdos Systems (http://www.galdos.com)

Web Site: http://gml4j.sourceforge.net/

Implementation Language: Java

Source License: Apache

2.2.1.2 WKB4J
WKB4J is a WKB interpretation library developed to proved a high-speed
interconnect between Java and WKB-enabled spatial data sources (usually
RDBMS). WKB4J provides a “Factory” interface to a WKB data source and can
produce a number of different geographic primitive objects – JTS geometries,
PostGIS Java geometries, OpenMap geometries.

Maintainer: David Garnier (david.garnier@etudier-online.com)

Web Site: http://wkb4j.etudier-online.com/

Implementation Language: Java

Source License: GPL

 - 22 -

mailto:warmerdam@pobox.com
http://gml4j.sourceforge.net/
mailto:warmerdam@pobox.com
http://wkb4j.etudier-online.com/

2.2.1.3 JTS Topology Suite
JTS is the central geometry library for much of the ongoing Java GIS
development. JTS provides a Java implementation of the OpenGIS “Simple
Features Specification”, in particular the functions described in the “Simple
Features for SQL Specification”.

The element which makes JTS special is the implementation of the “spatial
predicates”. Spatial predicates are functions which compare two spatial objects
and return a boolean true/false result indicating the existence (or absence) of a
particular spatial relationship. Some examples of spatial predicates are
Contains(), Intersects(), Touches(), and Crosses(). The JTS implementation of the
predicates is special in that the functions are all “robust” – that is, there is no
special case of strange geometries or odd coordinates which is capable of
producing a failure or incorrect result. This is a unique property – most
proprietary products to not include robust spatial predicates.

JTS also includes implementations of the spatial “operators” which take two
geometries and return a new derived geometric result. Examples of the operators
include Difference(), Union(), and Buffer(). The JTS operator implementations
have been widely tested, but do not have robustness guarantees like the
predicates.

Spatial predicate and operator implementations are valuable because they are
extremely difficult to code. For this reason, the JTS library is widely reused by
other OSS projects. By using JTS, they get a standard set of geometries, with the
most difficult spatial methods already implemented.

Maintainer: Martin Davis (mbdavis@vividsolutions.com)

Web Site: http://www.jump-project.org/

Implementation Language: Java

Source License: LGPL

JTS development was originally funded by GeoConnections.

 - 23 -

http://www.jump-project.org/

2.2.1.4 GeoTools
Geotools is an open source, Java GIS toolkit for developing OpenGIS compliant
solutions. It has a modular architecture which allows extra functionality to be
added or removed easily. Geotools aims to support OpenGIS and other relevant
standards as they are developed.

The aim of the project is to develop a core set of Java objects in a framework
which makes it easy for others to implement OGC compliant server-side services
or provide OGC compatibility in standalone applications or applets. The GeoTools
project comprises a core API of interfaces and default implementations of those
interfaces.

It is not the intention of the GeoTools project to develop finished products or
applications, but it is the intention to interact and support fully other initiatives
and projects which would like to use the GeoTools 2 toolkit to create such
resources.

GeoTools features and goals:
GeoTools code is built using the latest Java tools and environments (Java 1.4.1
at time of writing) and will continue to leverage the capabilities of future Java
environments and official extensions as and when the technologies are released
and have been through the first maintenance cycle (i.e. version 1.x.1)

GeoTools is being built in as modular a form as possible in a way that allows
interested parties to use the functionality that they are interested in without
needing to know about or include the functionality that they are not interested
in.

Modules are built which support individual OGC specifications (e.g. Filter, SLD,
GML2) and which also support interaction with a wide range of datasources (e.g
Shapefile, MIF/MID, PostGIS and MySQL). Modules each have their own
maintainers who control the content and direction of that module. The GeoTools
project actively encourages suggestions for new modules and invites interested
developers to start new modules for new functionality or to help drive and
develop existing modules.

The overall maintenance and future directions of GeoTools is managed by the
GeoTools Project Management Committee. Currently this comprises 7 active
developers who take joint responsibility for design and implementation decisions.
The team welcomes and encourages others to become contributors and
ultimately become part of the GeoTools development team.

It is a long term goal of the GeoTools project to refine its core API and promote its
use so that it can become a recognized and standard API for GeoSpatial
development.

Maintainer: GeoTools Project Management Committee

Web Site: http://www.geotools.org

Implementation Language: Java

Source License: LGPL

 - 24 -

http://www.vividsolutions.com/jts/jtshome.htm

2.2.2 Applications
2.2.2.1 GeoServer
The GeoServer project is a Java (J2EE) implementation of the OpenGIS
Consortium's Web Feature Server specification. It is free software, available
under the GPL 2.0 license.

GeoServer is built on top of the GeoTools library, and as a result, much of the
internal logic of the server (data sources, GML parsing, XML Filter support, etc)
actually resides and is maintained at the GeoTools library level. In this respect,
it is best to consider the two projects as conjoined entities – GeoServer/GeoTools.

The GeoServer WFS has been chosen by OpenGIS as a reference implementation
for use in the OpenGIS “CITE” interoperability portal. As a reference
implementation, GeoServer will be required to support all aspects of the current
and evolving specification.

GeoServer can currently serve WFS on top of:

• Oracle Spatial

• ArcSDE

• PostGIS

• ESRI Shape Files

In addition to WFS support, GeoServer includes support for the Z39.50 catalog
server which is part of the OpenGIS catalog server specification.

GeoServer passes all OpenGIS Conformance Tests and is fully compliant with the
Web Feature Server 1.0 Specification.

Maintainer: The Open Planning Project (http://www.openplans.org)

Web Site: http://geoserver.sourceforge.net

Implementation Language: Java

Source License: GPL

 - 25 -

http://www.openplans.org/
http://geoserver.sourceforge.net/

2.2.2.2 DeeGree
DeeGree (formerly known as “JaGo”) was developed initially in an academic
environment at the University of Bonn in Germany. The architecture is a
message passing system, designed to be both extremely modular and highly de-
coupled. The DeeGree architecture allows various components of the system to
run on different machines while still presenting a unified system to the outside
world.

Before leaving the academic world, DeeGree completed considerable OpenGIS
feature support, including both WMS and WFS server implementations.
Supported data sources include shape file, RDBMS and OpenGIS data formats
(WKB and WKT). Catalog server support, grid coverage server support and
others are either fully are partially complete.

The architecture which makes DeeGree unique also makes understanding the
code hard for the neophyte – learning curves can be steep.

As part of the CITE project, the GeoTools and DeeGree teams are working to
harmonize underlying data models (feature and geometry models) and to bring
some of the DeeGree capabilities (such as WMS) into the GeoTools / GeoServer
projects for use in CITE.

Maintainer: DeeGree Team (info@lat-lon.de)

Web Site: http://deegree.sourceforge.net/

Implementation Language: Java

Source License: LGPL

 - 26 -

mailto:info@lat-lon.de
http://deegree.sourceforge.net/

2.2.2.3 JUMP / JCS
JUMP is the “JUMP Unified Mapping Platform”, a visualization and user interface
toolkit used by the “JCS Conflation Suite” for solving data integration problems.

JUMP was designed to be a generic and pluggable environment into which the
complex algorithms required for spatial data conflation could be embedded.
Spatial data conflation usually requires a human input element, and as a result
JUMP was built with a number of generic user interface and GIS viewer features.

• JUMP provides an interactive Workbench for viewing, editing, and processing
spatial datasets

• JUMP provides an API giving full programmatic access to all functions,
including I/O, feature-based datasets, visualization, and all spatial operations

• JUMP is highly modular and extensible
• JUMP supports important industry standards such as GML and the OpenGIS

Consortium spatial object model
• JUMP is written in 100% pure JavaTM

JUMP supports GML, Shape, and RDBMS data sources.

Maintainer: Martin Davis (mbdavis@vividsolutions.com)

Web Site: http://www.jump-project.org

Implementation Language: Java

Source License: GPL

 - 27 -

http://www.jump-project.org/

2.2.2.4 OpenMap
OpenMap is a component library for building spatial applications in Java. It was
originally developed by BBN technologies for consulting projects with utilities and
telephony companies. It was the earliest open source Java spatial toolkit, and
the code base is a little crufty at this point. The old architecture largely remains,
but several new concepts and ways of accessing data been overlaid on top of it.

OpenMap is still being actively developed by BBN, and BBN provides support
contracts for companies that want to use OpenMap as part of a product or other
deployment.

OpenMap supports Shapefiles as an input data source, but other data sources
are largely coded from scratch. The “Layer” concept in OpenMap is sufficiently
general that almost any data source can be slaved into an OpenMap application –
for example, OpenMap ships with an example “EarthQuakes” layer which
continuously updates against a public earthquake information HTML page to
provide an always-current map of recent earthquakes.

Maintainer: BBN Technologies (openmap@bbn.com)

Web Site: http://openmap.bbn.com/

Implementation Language: Java

Source License: Mozilla-style

 - 28 -

http://openmap.bbn.com/

2.2.2.5 uDig / JUMP2
uDig is a project to join the strengths of the GeoTools project (design, data
structures, standards) with the strength of the JUMP project (UI, renderer,
interactivity) into a new desktop editor capable of interacting with a range of
local, network, and internet data sources.

UDig stands for “User-friendly Desktop Internet GIS”, and the goal is to bring
internet mapping technologies such as WMS and WFS transparently to ordinary
GIS users desktops, creating a worthy successor to the JUMP client
environment.

The uDig application will have the following capabilities:

• WFS client read/write support, to allow direct editing of data exposed via
transactional Web Feature Servers (WFS-T).

• WMS support, to allow viewing of background data published via WMS.

• Styled Layer Descriptor (SLD) support, to allow the client-directed
dynamic re-styling of WMS layers.

• Web Catalog Server support, for quick location of available CGDI layers.

• Printing support, to allow users to create standard and large format
cartography from their desktops using CGDI data sources.

• Standard GIS file format support, to allow users to directly open,
overlay, and edit local Shape and GeoTIFF files with CGDI online data.

• Coordinate projection support, to transparently integrate remote layers
in the client application where necessary.

• Database access support, to allow users to directly open, overlay and edit
data stored in PostGIS, OracleSpatial, ArcSDE, and MySQL.

• Cross-platform support, using Java as an implementation language, and
providing one-click setup files for Windows, OS/X, Linux and Solaris.

• Multi-lingual design, allowing easy internationalization of the interface,
with French and English translations of the interface completed initially.

• Customizability and modularity, to allow third party developers to add
new capabilities, or strip out existing capabilities as necessary when
integrating the application with existing enterprise infrastructures.

At the time of writing, uDig is in the design stage, with a delivery schedule
starting in summer of 2004 and running to spring 2005.

Maintainer: Refractions Research (info@refractions.net)

Web Site: http://udig.refractions.net/

Implementation Language: Java

Source License: GPL

 - 29 -

http://udig.refractions.net/

	Table of Contents
	Summary
	Open Source
	Open Source GIS

	Implementation Languages
	Survey of ‘C’ Projects
	Shared Libraries
	GDAL/OGR
	Proj4
	GEOS

	Applications
	OpenEV
	UMN Mapserver
	GRASS
	OSSIM
	QGIS
	Thuban
	GMT
	PostGIS

	Survey of ‘Java’ Projects
	Shared Libraries
	GML4J
	WKB4J
	JTS Topology Suite
	GeoTools

	Applications
	GeoServer
	DeeGree
	JUMP / JCS
	OpenMap
	uDig / JUMP2

